Hot melt extruded Aprepitant-Soluplus solid dispersion: preformulation considerations, stability and in vitro study.
نویسندگان
چکیده
CONTEXT Solubility limitation of BCS class II drugs pose challenges to in vitro release. OBJECTIVE To investigate the miscibility of Aprepitant (APR) and Soluplus(®) (SOL) for hot melt extrusion (HME) viability and improved in vitro release of APR. METHODS Solubility parameters of APR and SOL from group contribution methods were evaluated. Heat-cool-heat differential scanning calorimetry (DSC) scans were assessed for determining the glass forming ability (GFA) and glass stability (GS) of APR. An optimum HME temperature was selected based on melting point depression in physical mixtures. Moisture sorption isotherms were collected using a dynamic vapor sorption (DVS) analyzer at 25 °C. A 1:4 APR:SOL physical mixture was extruded in a co-rotating 12 mm twin screw extruder and in vitro release was assessed in fasted state simulated intestinal fluid (FaSSIF) with 0.25% SLS. Extrudates were analyzed using TGA, DSC, XRD and FTIR. RESULTS APR was classified as a class II glass former. APR and SOL had composition dependent miscibility based on Gibb's free energy of mixing. Extrudate prepared using HME had an amorphous as well as a crystalline phase that showed good stability in accelerated stability conditions. Smaller particle size extrudates exhibited a higher % moisture uptake and in vitro release compared to larger particle size extrudates. Enhanced in vitro release of APR from extrudates was attributed to amorphization of APR, solubilization as well as crystal growth inhibition effect of SOL due to H-bond formation with APR. CONCLUSIONS A solid dispersion of APR with improved in vitro release was successfully developed using HME technology.
منابع مشابه
Hot Melt Extruded Amorphous Solid Dispersion of Posaconazole with Improved Bioavailability: Investigating Drug-Polymer Miscibility with Advanced Characterisation
Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD) with imm...
متن کاملOrally Disintegrating Tablets Containing Melt Extruded Amorphous Solid Dispersion of Tacrolimus for Dissolution Enhancement
In order to improve the aqueous solubility and dissolution of Tacrolimus (TAC), amorphous solid dispersions of TAC were prepared by hot melt extrusion with three hydrophilic polymers, Polyvinylpyrrolidone vinyl acetate (PVP VA64), Soluplus® and Hydroxypropyl Cellulose (HPC), at a drug loading of 10% w/w. Molecular modeling was used to determine the miscibility of the drug with the carrier polym...
متن کاملFabrication and Characterizations of Hot-Melt Extruded Nanocomposites Based on Zinc Sulfate Monohydrate and Soluplus
Zinc sulfate monohydrate (ZnSO4)-loaded nanocomposites (NCs) were fabricated by using a hot-melt extruder (HME) system. Soluplus (SP) was adopted as an amphiphilic polymer matrix for HME processing. The micro-size of ZnSO4 dispersion was reduced to nano-size by HME processing with the use of SP. ZnSO4 could be homogeneously dispersed in SP through HME processing. ZnSO4/SP NCs with a 75 nm mean ...
متن کاملDevelopment and optimization of ketoconazole oral strips by means of continuous hot-melt extrusion processing.
OBJECTIVES The aim of this study was to develop mucoadhesive oral strips using hot-melt extrusion as a continuous manufacturing process. METHODS Powder blends of ketoconazole, a water-insoluble drug - either hydroxypropyl methylcellulose (HPMC) or soluplus (SOL), sorbitol (SRB) and magnesium aluminometasilicate (MAS) were extruded to manufacture thin strips with 0.5-mm thickness. The presence...
متن کاملArtemether-Soluplus Hot-Melt Extrudate Solid Dispersion Systems for Solubility and Dissolution Rate Enhancement with Amorphous State Characteristics
This work studied artemether (ARTM) solid dispersion (SD) formulation using mixture of polymer excipient Soluplus, PEG 400, Lutrol F127, and Lutrol F68 melts at temperatures lower than the melting point of ARTM using a laboratory-size, single-screw rotating batch extruder. The effects of three surfactants PEG 400, Lutrol F127, and Lutrol F68 and parameters like mixing temperature, screw rotatin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug development and industrial pharmacy
دوره 42 10 شماره
صفحات -
تاریخ انتشار 2016